

Engineering and Physical Sciences Research Council

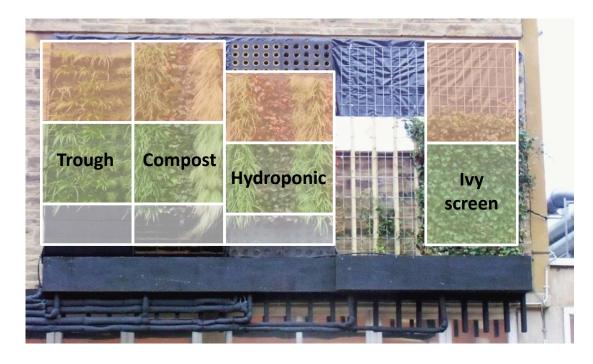
Living Wall Research Project

BUILDING ENVIRONMENTS ANALYSIS UNIT

B

E

Scotscape is pleased to share our interim results on the thermal benefits of Living walls.


Scotscape have invested in this research which has been carried out by Principle investigator Dr Hasim Altan and Research Assistant and PhD Student Juri Yoshimi as part of the Engineering and Physical Sciences Research Council funded Knowledge Transfer Collaborative R&D award, at the University of Sheffield.

These encouraging results have established the first bridge between the rapidly growing living wall industry and academic knowledge and will support the thermal benefits claims of living walls.

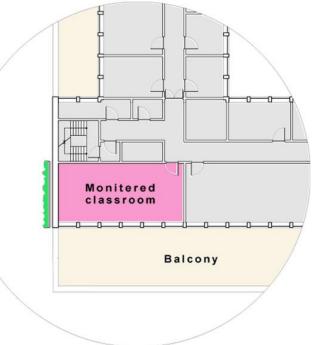
The results mark the beginning of Scotscape's planned research and development programme to continue to analyse and quantify the multi-faceted benefits that living walls can bring, both in terms of energy efficiency and bio-diversity to the sustainable urban environment.

Test Beds

- System + extra insulation layer
- Existing system
- System without plants

- The monitoring started in **November 2012** for 12 months.
- 5 different systems are tested
- Each system is divided into
 3 sections including a part with an extra insulation layer, existing system format and components without plants.
- Analysis is conducted on 4 systems

Building


Living walls were installed on the southwest facing wall of the building. They cover a section of the walls of a 1st floor classroom.

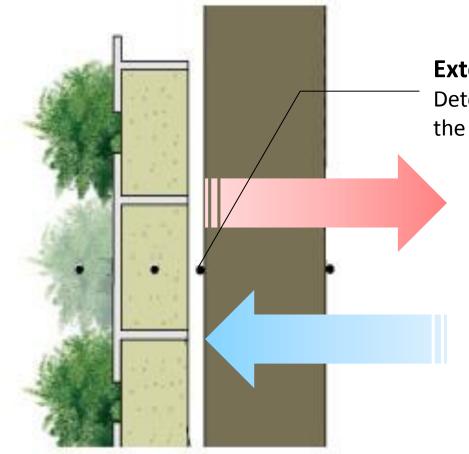
• Monitoring has also been carried out on the identical classroom directly above.

1F: A room with living wall cover

2F: Reference room (no vegetation cover)

JILDING ENVIRONMENTS ANALYSIS UNIT

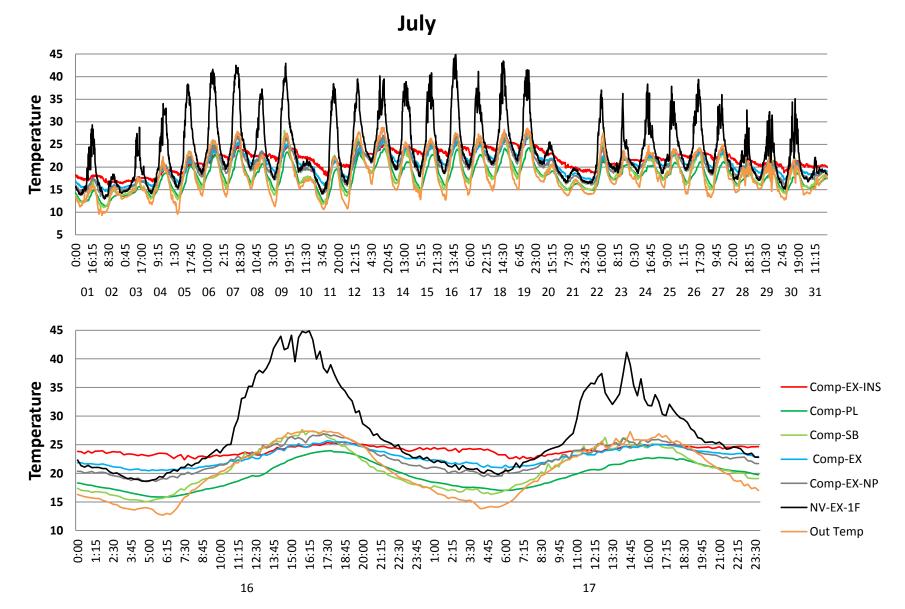
Measurements


 Sensors have been recording temperatures of **both surfaces** of the class room wall, inside the **substrate & foliage mass.**

 Water meters have been recording the consumption for irrigation and the tanks have been collecting the excess water released from each system.

BUILDING ENVIRONMENTS ANALYSIS UNIT

Thermal Analysis

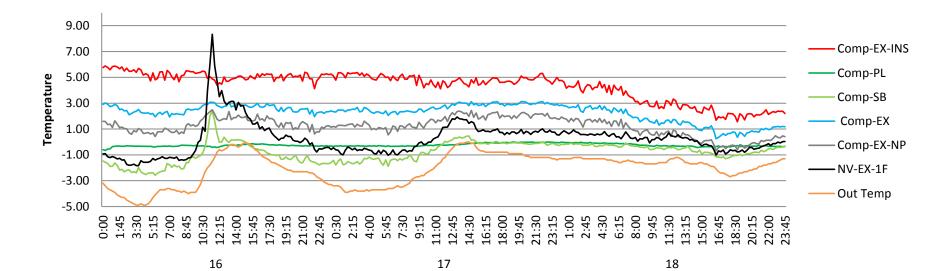


External wall surface temperature

Determines how much heat coming in / out of the room through the wall

Energy loads for heating & cooling Heat transferred through the wall structure

External Surface Temperature - Summer

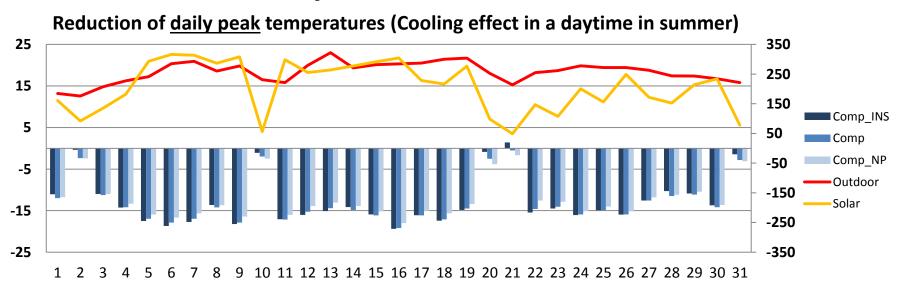

External Surface Temperature – Summer

Summary

- Summer in the UK in 2013 was the hottest summer on record since 1910 on average it was 0.8°C hotter. July was the hottest month.
- The external wall temperature on a the non-vegetated wall surface reached a peak of 45°C.
- Temperatures behind all systems tested showed positive cooling effects, lowering the external wall temperature by 20°C.

External Surface Temperature - Winter

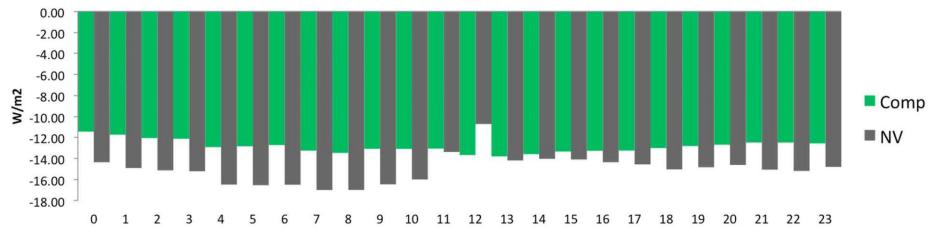
20.00 15.00 Temperature 10.00 5.00 0.00 -5.00 0:00 5:30 5:30 19:30 11:00 18:00 9:30 1:00 16:30 8:00 23:30 15:00 6:30 22:00 13:30 5:00 20:30 12:00 3:30 19:00 2:00 2:00 9:00 0:30 0:30 7:30 7:30 23:00 14:30 6:00 21:30 13:00 11:30 18:30 8:30 7:00 22:30 14:00 21:00 12:30 4:00 2:30 4:30 20:00 3:00 10:00 1:30 17:00 01 30 31 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29


January

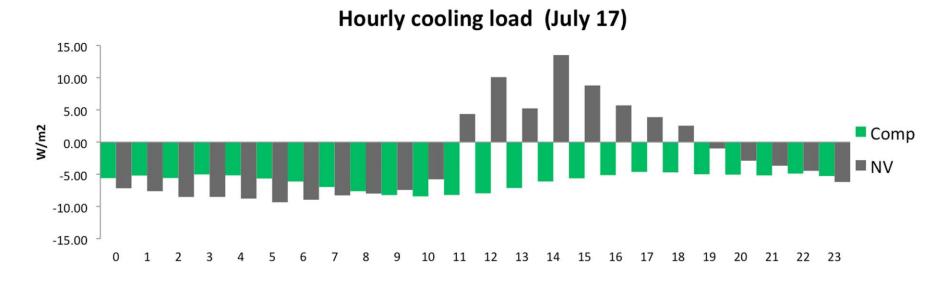
External Surface Temperature – Winter

Summary

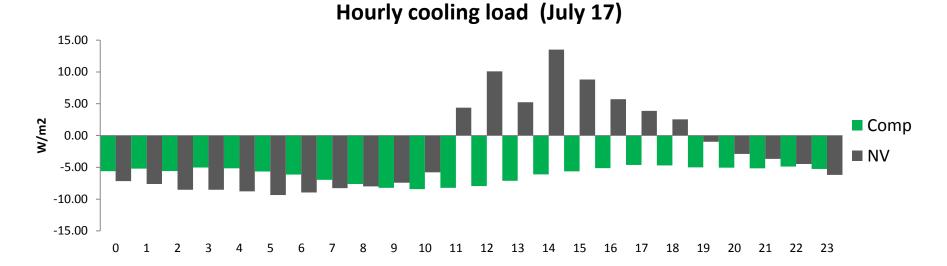
- Winter 2013 was slightly wetter than average and the temperature was an average of 0.4°C cooler. February was the coldest month of the year and a spell of severe weather brought very low temperatures during March and April.
- Temperatures behind the systems with no vegetation remained between 2-5°C higher than the wall temperature with no systems in place
- Temperatures behind the systems with plants was 4-7°C higher than the wall temperature with no systems in place – meaning that plants provided additional insulation in winter.


External Surface Temperature – Effects

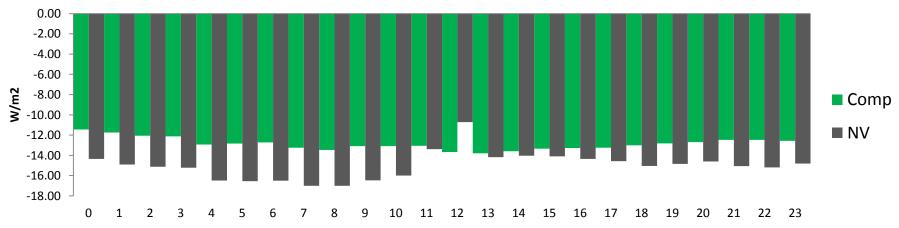
Increase of daily minimum temperatures (Insulating effects at night time in winter) 15 50 13 11 0 9 Comp INS 7 -50 Comp 5 Comp NP 3 -100 Outdoor Solar 1 -1 -150 -3 -5 -200 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 8


Reduction of Monthly Cooling & Heating Loads

JULY		Cooling load (Wh/m2)	Reduction
When air-conditioning is on for 24hrs	No Living Wall	1685	
	Living Wall	0	100%
	Living Wall + Insulation	0	100%
Between 8:00 – 19:00	No Living Wall	1667	
	Living Wall	0	100%
	Living Wall + Insulation	0	100%
JANUARY		Heating load (Wh/m2)	Reduction
	No Living Wall	Heating load (Wh/m2) 11712	Reduction
When heating is on	No Living Wall Living Wall	• • • •	Reduction 7%
	0	11712	
When heating is on for 24hrs	Living Wall	11712 10844	7%
When heating is on	Living Wall Living Wall + Insulation	11712 10844 8379	7%



Hourly heating load (January 01)


Heating and Cooling Loads (Compost system)

Heating and Cooling Loads

Hourly heating load (January 01)

Research Summary

- Living walls are very effective tools to reduce the heat absorbed by buildings during the Summer.
- Living walls are effective insulators of buildings during the Winter.
- Significant energy efficiencies are delivered by living walls especially in the summer – cooling buildings by up to 20°C – reducing the need to cool buildings by using excessive air conditioning.
- Good energy efficiencies are delivered by living walls in the winter insulating buildings by up to 7°C.
- Scotscape are able to offer site specific building services calculations to show how living walls assist with reduction of 'u' values.